

产品使用手册

RM-MGBD 双爪微型夹爪

MICRO GRIPPER - DOUBLE CLAWS

使用产品前,请仔细阅读本手册

资料编码: MGBDPUM2504

产品免责声明

尊敬的客户:

我们衷心感谢您选择佛山市增广智能科技有限公司(以下简称"我们"或"本公司")的产品。本免责声明旨在告知您产品使用过程中可能遇到的风险和责任,以确保双方的权益得到妥善保护。请您务必仔细阅读并透彻理解本声明。

1. 产品使用风险提示

我们的产品均按照行业标准设计和制造。然而,任何产品都可能存在一定的使用风险。我们建议您在使用过程中严格遵循操作规程和安全指南,以最大程度降低潜在风险。请注意,您应自行承担使用产品的相关风险,包括但不限于产品性能、准确性和适用性等。

2. 免责声明

我们不承担因以下情况导致的任何损失或损害:

- 1) 用户操作不当、滥用、私自改装或超出产品使用范围使用。
- 2) 产品不能满足用户所有特定的用途,我们建议您在使用前自行评估产品是否符合您的特定需求。
- 3) 用户使用第三方维保服务导致的产品故障、延误或缺陷造成的间接损害、特殊损害、附带损害或后果性损害。
- 4) 第三方产品或服务与我们的产品结合使用产生的任何责任。

3. 版权和知识产权声明

我们提供的所有产品、服务及商标等均受知识产权法律及其他相关法律的保护,并归本公司所有。未经 我们的明确许可,任何单位及个人不得以任何方式修改、租借、租赁、销售、分享或分发我们的产品及 服务。

4. 产品品质保证

我们提供的产品品质保证限于产品本身的制造缺陷。本品质保证不适用于受到不当储存、组装、使用和被放置在室外或潮湿等恶劣环境中的产品。不包括正常的磨损、切割和刮擦,或者由撞击或事故引起的损坏。

5. 法律适用与管辖

本免责声明适用于中华人民共和国法律,并按照中华人民共和国法律解释。如遇争议,双方应首先尽力通过友好协商解决;协商不成时,任何一方均有权提交至本公司所在地的人民法院。

6. 修改与更新

我们保留随时修改、更新、升级或停用产品的权利。对于本免责声明的任何修改,我们将在本公司网站 或产品手册上发布更新,一经发布立即生效。

7. 其他条款

本免责声明并不替代双方之间的其他合同关系。如果存在其他合同条款,请您同时遵守。

我们期待与您的持续合作,并承诺为您提供高质量的产品和服务。

前言

资料简介

RM-MGBD 双爪微型夹爪,以其小巧的尺寸和强大的功能,成为了工业自动化的得力助手。其具有尺寸微型、微小出力、高速开合、高精度、高可靠性、控制简单等众多显著优势;能够与国内外各大品牌的工业机器人、协作机器人、单轴或多轴设备模组无缝配合,实现对不同大小和型状物品的自适应夹取,完成精细易损物品的夹持、移载、装配、搬运、检测等工序。

本手册提供了产品的总体介绍、安装事项、安装说明、通讯协议与控制、软件调试工具、故障处理及 保修事项等方面的说明。对于初次使用的用户,请务必认真阅读本手册。若对本手册内容有所疑惑, 可咨询我司的工程师 / 技术人员进行技术指导。

适应性

本手册适用于 RM-MGBD(双爪微型夹爪)系列全型号产品,包括 ITG 一体式型号(控制器内置)、分体式型号(控制器外置)及 SoftForce® 精密力控型。

产品主要特点

• 微型体积

• 自适应夹持

• 精确力控

· 支持内撑 / 外夹

• 高刚性机身

• 支持自动测量内径 / 外径

• 高速响应

• 出力稳定

• 多点位位置控制

• 重复定位精度高

• 自动掉落检测

· 工业级寿命

产品使用范围

· 3C 电子生产

• 自动化生产 & 装配

半导体

• 自动化设备

• 日用化妆品生产

• 其他更多行业

注意事项

- 1. 本手册为系列化产品的通用手册,手册中的图例仅作为举例说明,可能会与您订购的产品有差异。
- 2. 本公司致力于产品的不断完善,产品外观、性能等会不断升级,如有产品变更恕不另行通知,请以官网的最新产品中心资料为准。
- 3. 若使用过程中有其他问题,请联系我司售后技术工程师。

目录

前記	言	• • • • • • • • •		3
1	产品			
	1.1	产品说	钟	6
	1.2	产品型	빌号及参数 - ITG 一体式 (控制器内置)	7
	1.3	产品型	발号及参数 - 分体式型号 (控制器外置)	7
2	试机	准备		8
	2.1	产品目	录	8
	2.2	控制器	8与执行器匹配	
	2.3	需自行	ī准备的物品	C
	2.4	RMS \$	次件调试平台	c
3	执行		线	
	3.1		9设计与安装	
	3.2	执行器	B的接线说明	10
		3.2.1	建议扎线及固定方式	
	3.3	一体式	尤连接面板的接线说明(ITG 系列)	11
		3.3.1	上位机软件调试接线方式	
		3.3.2	总线控制的接线方式	
		3.3.3	I/O 控制的接线方式	12
		3.3.4	执行器的线序说明	12
		3.3.5	执行器线缆的绝缘保护	12
		3.3.6	电路图接线说明	13
	3.4	执行器	8与 RM-CEP 控制器的接线说明	14
	3.5	总线控	空制的接线说明	15
		3.5.1	RM-CEP-X-ECAT 型号控制器的接线说明	15
		3.5.2	RM-CEP-X-TCP、RM-CEP-X-PN、RM-CEP-X-EIP 型号控制器的接线说明	16
		3.5.3	RM-CEP-X-CAN 型号控制器的接线说明	17
	3.6	I/O 控	制接线说明	18
	3.7	脉冲控	空制接线说明	20
	3.8	电源模	草块接线说明	21
4	RMS	软件调	周试平台的使用	22
•	4.1		5年, 日 年5年,	
	4.2	控制器	 B接口接线确认界面	22
	4.3		接	
	1.0	4.3.1	Modbus RTU 连接方式	
		4.3.2	Modbus TCP 连接方式	
		4.3.3	主界面功能介绍	
	4.4		量辑界面	
		4.4.1	界面功能介绍	
		4.4.2	指令类型详解	

	4.5	指令编	扁辑实例	30
		4.5.1	快速定位运动	30
		4.5.2	快速柔性推压	32
	4.6	离线采	4集界面	34
	4.7	状态监	控界面	36
		4.7.1	左侧状态栏	36
		4.7.2	右侧状态栏	36
	4.8	参数编	辑界面	37
		4.8.1	更改站号、波特率	37
		4.8.2	更改 IP 地址	38
		4.8.3	更改 MAC 地址	38
		4.8.4	外部 I/O 输入输出配置	39
		4.8.5	脉冲参数调整	39
		4.8.6	上电回原点设置	40
		4.8.7	回原方向反转	40
	4.9	I/O 映	射界面	41
5	Mod	bus R	TU 通讯指南	42
	5.1	功能码	3地址说明	42
		5.1.1	02H 功能码	42
		5.1.2	03H / 10H 功能码	42
		5.1.3	04H 功能码	45
		5.1.4	05H 功能码	45
	5.2	Modb	us 通讯报文示例	46
		5.2.1	读取当前位置 / 速度 / 力矩	46
		5.2.2	读取当前报警信号 / 动作完成信号	47
		5.2.3	读取当前力矩 / 点位参数信息	47
		5.2.4	设置点位参数 / 定位模式参数	47
		5.2.5	触发重置错误 / 伺服开关 / 指令停止 / 重置力(精密力控)/ 初始化 / 执行点位动作	48
	5.3	定位模	試使用说明	49
		5.3.1	定位模式介绍	49
		5.3.2	Modbus RTU 实例(使用定位模式执行夹持 / 张开动作)	50
		5.3.3	定位模式注意事项(F&Q)	52
6	电动	夹爪维	护保养	53
	6.1	维护保	R养总则	53
		6.1.1	首次使用 / 长期未使用	53
		6.1.2	超过半个月未使用 / 长期未使用	53
	6.2	维护係	R养频率	53
	6.3	重点维	主护保养部位	53
	6.4	防尘片	ī的更换	53
	6.5	定期夘	卜部清洁及润脂	54
	6.6	定期自	检	55

1 产品介绍

1.1 产品说明

RM-MGBD 双爪微型夹爪系列

RM-MGBD 双爪微型夹爪,开闭行程覆盖 0-20mm,最夹持力范围 0-30N,重复定位精度为 ± 0.02 mm,最快开 / 合时 间 0.25s/0.25s。凭借高精度、高效率、高可靠性等产品特点,能够提升工业机器人及自动化设备的性能和效果,为集成 商及终端客户带来了更多的便利和价值。

RM-MGBD 具备两种主要工作模式,以适应不同的抓取需求:

- 1. 内撑模式:适用于在夹具行程范围内的物体抓取,它不限制物体的形状,提供了广泛的适用性;
- 2. 外夹模式:适用于抓取外形不规则或外表面不能被挤压的物体,确保了对特殊形状物体的有效夹持。

相较于气动夹爪,RM-MGBD系列夹爪支持自适应柔性夹持,无需频繁更换末端夹具,只需在执行器有效行程范围内都可以快速有效且稳定地完成夹持工件,通过简单的夹持指令动作便能够实现多功能、复合动作的抓取任务,极大地增强了在多个行业的应用效能,如 3C 电子、半导体、汽车装配、生物医疗、新零售等领域。

RM-MGBD 双爪微型夹爪配套增广自研驱控一体控制器,运动性能卓越,可自由切换多种控制方式; 预设 10+ 实用控制功能,包括自适应夹持、夹取确定、力位速混合控制、自整定、力矩自动回原等; 提供完整的 SDK/API,最大限度节省开发成本;原生支持市面大部分主流协议,无需网关,无延时。

标准产品为驱控一体控制器内置的ITG系列,如需支持更多控制方式,可选控制器外置的产品型号。具体参数可参考下表。

1.2 产品型号及参数 - ITG 一体式(控制器内置)

	说明项	i	参数说明						
	型号名		RM-MGBD-11-14-S-ITG	RM-MGBD-11-14-L-ITG	RM-MGBD-11-20-S-ITG	RM-MGBD-11-20-S-ITG			
型	尺寸编号		11	11	11	11			
号说	规格		14	14	20	20			
明	长度		S	L	S	L			
	行程 (mm)		13	13	20	20			
	最大夹持力) (N)	15	30	15	30			
性能	重复精度(mm)	±0.02	±0.02	±0.02	±0.02			
参	最快开 / 合	时间 (s)	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25			
数	负载允许力矩 (N.m)		MR: 4.6, MP: 1.9, MY:2.7	MR: 4.6, MP: 1.9, MY:2.7	MR:4.70, MP:2.84, MY:2.84	MR:4.70, MP:2.84, MY:2.84			
控	控制方式	总线	Modbus RTU/CANopen	Modbus RTU/CANopen	Modbus RTU/CANopen	Modbus RTU/CANopen			
制方	32.037320	接口	I/O 控制	I/O 控制	I/O 控制	I/O 控制			
式	I/O 接口		输入 3 点 (NPN) 输出 3 点 (NPN)						
	额定电压(V)	DC24±10%	DC24±10%	DC24±10%	DC24±10%			
运	额定电流 (A)		2	2	2	2			
行环	质量 (kg)		0.5	0.5	0.5	0.5			
境	使用环境			0~40°C、85%RH以	【下 (无结露情况下)				
	防护等级		IP40	IP40	IP40	IP40			

1.3 产品型号及参数 - 分体式型号(控制器外置)

	说明项			参数说明		
	型号名	RM-MGBD-08-8	RM-MGBD-11-14-S	RM-MGBD-11-14-L	RM-MGBD-11-20-S	RM-MGBD-11-20-L
型	尺寸编号	08	11	11	11	11
号说	规格	8	14	14	20	20
明	长度	-	S	L	S	L
	行程(mm)	7	13	13	20	20
	最大夹持力(N)	5	15	30	15	30
性	重复精度(mm)	±0.02	±0.02	±0.02	±0.02	±0.02
能参	最快开 / 合时间(s)	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25	0.25/0.25
数	负载允许力矩 (N.m)	MR: 1.5, MP: 0.5, MY: 0.5	MR: 4.6, MP: 1.9, MY:2.7	MR: 4.6, MP: 1.9, MY:2.7	MR:4.70, MP:2.84, MY:2.84	MR:4.70, MP:2.84, MY:2.84
控制方	适用控制器	RM-C-20, RM-CEP-20, RM-CEM	RM-C-20, RM-CEP-20, RM-CEM	RM-C-20, RM-CEP-20, RM-CEM	RM-C-20, RM-CEP-20, RM-CEM	RM-C-20, RM-CEP-20, RM-CEM
式	支持总线协议(可选)	Modbus	RTU, EtherCAT, Modb	ous TCP, PROFINET, Et	herNet/IP, CC-LINK, C	ANopen
	额定电压 (V)	DC24±10%	DC24±10%	DC24±10%	DC24±10%	DC24±10%
运	额定电流 (A)	2	2	2	2	2
行环	质量 (kg)	0.3	0.4	0.5	0.4	0.5
境	使用环境		0~40°C、	85%RH 以下 (无结露	情况下)	
	防护等级	IP40	IP40	IP40	IP40	IP40

2 试机准备

2.1 产品目录

请查看包装箱内的《销售出库单》,确认是否与收到的产品型号、数量——对应。

销售出库单								
	1	佛山市增广智能和	斗技有限公司					
联系人	称:xxx 有限公司 :张小明 话:xxx xxxx xxxx			出货日期: 2022 单据编号: xxxx 备注: xxx				
	址:北京市 xxx xxx xxxx			田江. XXX				
		单位	单位数量		香注			
客户地	址:北京市 xxx xxx xxxx	単位	单位数量		香注			
客户地	址:北京市 xxx xxx xxxx _{货品名称}				香注			
客户地 序次 1	集: 北京市 xxx xxx xxxx	↑	78		香注			

2.2 控制器与执行器匹配

RM-MGBD 双爪微型夹爪分体式(控制器外置)系列推荐匹配的控制器为 RM-CEP 驱控一体伺服控制器,用户可根据实际总线协议的需求选择匹配的协议型号。

RM-MGBD-F 精密力控型双爪微型夹爪,需要匹配 RM-CEPF 精密力控型控制器。

RM 增广®的全系列产品,包括执行器和控制器均基于同一技术架构和语言开发。因此,RM-CEP与RM-CEPF控制器之间,其接线方式和RMS软件调试的方式基本一致。

本《手册》仅以 RM-CEP 控制器为例进行使用说明。 RM-CEPF 控制器的使用,请参考 RM-CEP。下文将不再 絮述。

请观察控制器上标签与电动夹爪本体上标签的序列号是否一一对应,控制器型号与执行器型号需要完全匹配,不能混用,否则可能使执行器动作出现异常。

RM-CEP 控制器上的型号标签

RM 执行器上的型号标签

2.3 需自行准备的物品

- 1. 24V 电源,要确保电源功率在额定功率之上,否则可能导致夹爪使用异常。
- 2. 一台 PC 电脑,用来连接上位机软件。

	PC 电脑最低要求
处理器	支持 64 位的 Intel 或 AMD 处理器
操作系统	Windows 10(64 位)版本或更高版本
RAM	2GB

2.4 RMS 软件调试平台

请登录增广智能官方网址 (www.rmaxis.com) 服务与支持页面下载软件,或联系我司售后工程师获取 RMS 调试软件的压缩包。

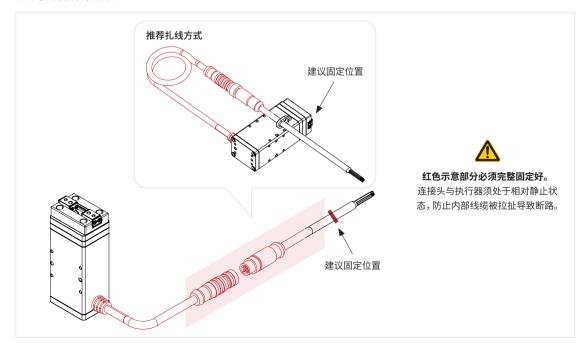
3 执行器的接线

- 执行器的接线操作请在断电的情况下进行,在接线完成之前,请勿打开电源,带电拔插会损坏执行 器或控制器。
- 电动夹爪的使用环境为0-40°C、85%RH以下(无结露情况下),请尽量满足电动夹爪的使用环境条件, 否则可能会导致电动夹爪出现异常。

3.1 夹具的设计与安装

夹爪的前端设计可根据具体的应用需求和被夹物品的尺寸来定制或更换,以实现最佳抓取效果。在依靠摩擦力进行抓取时, 建议夹持力至少为物品重量的 10 到 20 倍,以确保在接触面较小、未对正夹持的情况下, 依然保证足够强大的夹持力。

在安装过程中,应通过以下步骤确保夹爪的稳定性:

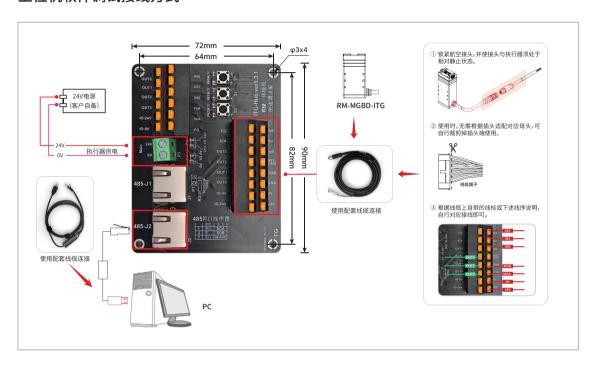

- 1. 在固定夹爪主体时,要利用所有可用的螺栓孔进行固定。
- 2. 确保所有螺栓均已紧固到位,保证不会出现松动的情况。
- 3. 请务必确保您设计的夹具与夹爪的滑块精准对齐,对应孔位需一致。如有必要,可采用适配器件进行调整对接。
- 4. 在使用过程中可以自行调整夹爪的动作,确保高效夹持。

3.2 执行器的接线说明

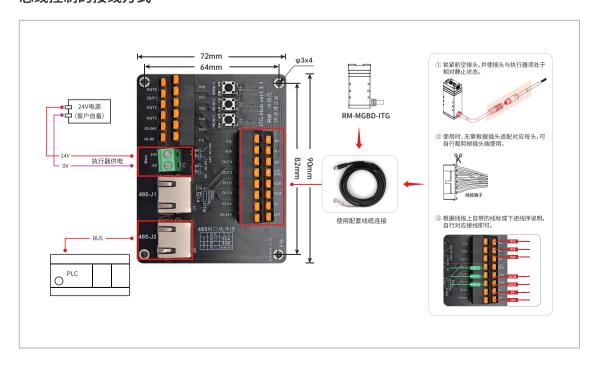
RM-MGBD 双爪微型夹爪具有 ITG (一体式) 和分体式两大系列。ITG (一体式系列) 是指驱控一体控制器内置于执行器内部,无需额外连接外部控制器;分体式是指控制器外置,需要额外连接外部控制器;RM-MGBD 接线时需要注意线缆的相对固定及散线的绝缘保护。

3.2.1 建议扎线及固定方式 (出线位置以A-航插转接出线为例)

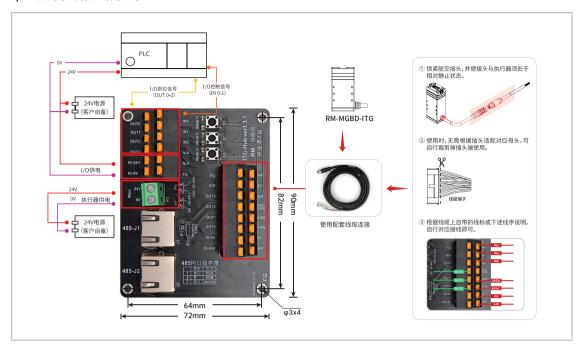
为确保产品在使用过程中电缆连接的稳定性,建议采用柔性的固定装置来固定电缆。这样做可以维持电缆的适当活动范围,并保证电缆具有充足的弹性来应对电缆弯曲和拉伸。有助于避免在操作中因电缆与电动执行器连接点的接触不稳定而导致的意外脱落或断开。



3.3 一体式连接面板的接线说明(ITG 系列)



"一体连接面板"仅供首次使用的用户快速调试使用,一般情况下无需使用。


3.3.1 上位机软件调试接线方式

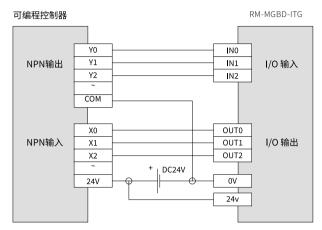
3.3.2 总线控制的接线方式

3.3.3 I/O 控制的接线方式

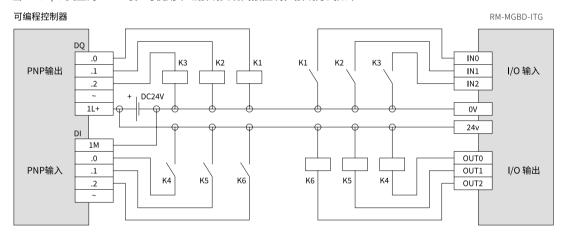
3.3.4 执行器的线序说明

组	颜色	定义	说明	
主供电	紫白	24V	执行器供电 24V	
土洪电	紫	0V	执行器供电 0V	
CAN	红	CAN_L	CANopen 通讯 L	
CAN	黑	CAN_H	CANopen 通讯 H	
屏蔽线	银白色	FG	外壳地 FG	
	细黄	IN0	输入 0	
I/O 输入	细黄白	IN1	输入1	
	灰	IN2	输入 2	
	棕	OUT0	输出 0	
I/O 输出	棕白	OUT1	输出1	
		OUT2	输出 2	
485		485-A	485 通信 A	
465	橙	485-B	485 通信 B	

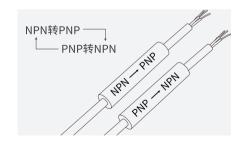
线缆的批次不同可能导致线芯颜色有些 微出入,具体请以线缆实物颜色为准。 如有疑问,请联系我们的售后工程师。


3.3.5 执行器线缆的绝缘保护

在完成所需的接线后,暂未使用的散线,请务必使用绝缘电气胶布或绝缘热缩管对散线进行绝缘保护,以避免线缆误触导致短路。

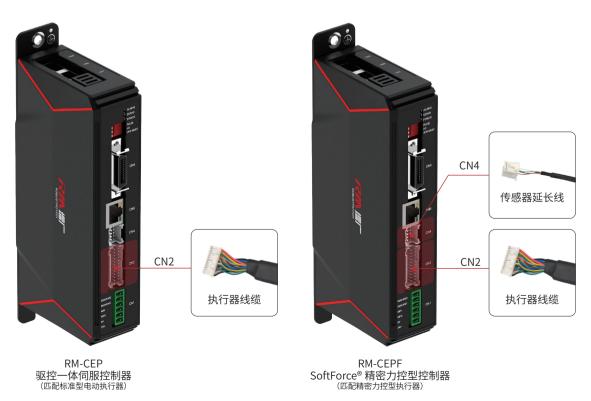


3.3.6 电路图接线说明


1. RM-MGBD-ITG (一体式) 系列原生支持 NPN,当 PLC I/O 类型和 RM-MGBD-ITG I/O 类型同为 NPN 时,接线方式如下:

2. 当 PLC I/O 类型为 PNP 时,可使用中继接线实现间接控制,接线方式如下:

也可使用 PNP 转 NPN 信号线 /NPN 转 PNP 信号线(下图所示)实现高低电平转换。


PNP 转 NPN 信号线 /NPN 转 PNP 信号线应 严格遵循线缆厂家提供的接线方式来接线。

3.4 执行器与 RM-CEP 控制器的接线说明

1. RM-MGBD 双爪微型夹爪通常匹配 RM-CEP 系列控制器, RM-CEP 控制器的参数说明如下表所示。

说明项	参数说明														
型号	RM-0	RM-CEP-A-TCP-S RM-CEP-A-CAN-S RM-CEP-A-PN-S				RM-CEP-A-EIP-S			RM-C	EP-A-E	CAT-S				
A	20	40	60	20	40	60	20	40	60	20	40	60	20	40	60
驱动电流 (A)	2	4	6	2	4	6	2	4	6	2	4	6	2	4	6
电源电压 (V)	DC	C24±10	1%	DC	C24±10	1%	DC	C24±10)%	DO	C24±10)%	DO	C24±10	%
I/O 控制		支持			支持			支持			支持			支持	
脉冲控制		支持			支持			支持			支持			不支持	
总线控制		dbus RT odbus T			dbus RT ANope	- 1		dbus RT ROFINE			dbus RT herNet,	- 1		dbus RT therCA	
I/O 接口	,			京(根据原	听选型 5	号,输入	/ 输出点	数不同);						
最大输入脉冲频率		00KPPS 500KPP		Max.200KPPS(24V)/ Max.500KPPS(5V)		Max.200KPPS(24V)/ Max.500KPPS(5V)		Max.200KPPS(24V)/ Max.500KPPS(5V)		/					
LED 显示	红黄组	绿三色状	态灯	红黄绿三色状态灯		红黄绿三色状态灯		红黄绿三色状态灯		红黄绿三色状态灯					
电缆长度	村	示准 3/5	n	标准 3/5m			标准 3/5m			标准 3/5m			标准 3/5m		
使用环境	1) 使用环境温度:0-40°C; 2) 使用环境湿度:85%RH以下(无结露状态); 3) 使用环境:避免在强光源、强紫外线、有腐蚀性气体的环境下使用; 4) 保存环境温度:-10°C -65°C; 5) 保存环境湿度:90%RH以下(无结露状态)。														
尺寸 (mm)	190*36*80 190*36*80		1	90*36*8	30	1	90*36*8	30	1	90*36*8	0				
质量 (kg)	g) 0.323 0.323			0.323				0.323			0.323				
保护等级	保护等级 IP20		IP20		IP20		IP20			IP20					
冷却	即 自然对流冷却 自然对流冷却		却	自然对流冷却		自然对流冷却		自然对流冷却							

2. 执行器与控制器的连接

3.5 总线控制的接线说明

3.5.1 RM-CEP-X-ECAT 型号控制器的接线说明

使用 RM-CEP-X-ECAT 型号控制器,端口定义如下:

3.5.2 RM-CEP-X-TCP、RM-CEP-X-PN、RM-CEP-X-EIP 型号控制器的接线说明

使用 RM-CEP-X-TCP、RM-CEP-X-PN、RM-CEP-X-EIP 型号控制器,端口定义如下:

3.5.3 RM-CEP-X-CAN 型号控制器的接线说明

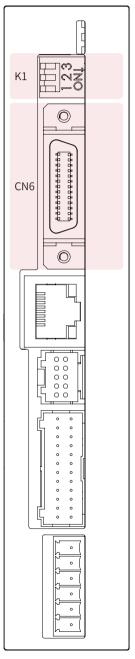
使用 RM-CEP-X-CAN 型号控制器,端口定义如下:

*出厂选配的 USB 转 485 调试头 *CN8、CN9 支持盲插,可选插任一端口。

- 使用 RMS 软件调试时,请用出厂选配的 USB 转 485 调试 头连接电脑或工控机。
- 若使用 Modbus RTU 连接可编程控制器或运动控制卡时,需要按照 485 的接线定义(如下图所示)与可编程控制器或运动控制卡进行连接。
- 连接 CANopen 时,需要按照 CANopen 的接线定义(如下图所示)与上位机进行连接。
- 请勿将 CN8/CN9 端口直接与电脑网口 / 路由器连接,以免损坏设备。

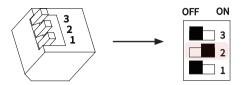
CN8/CN9 端口的线序定义

RJ45	功能标识	CN8/9 端口的线序
RJ45-1	485-SGA	$\frac{1}{2}$
RJ45-2	485-SGB	⁴ 567.8
RJ45-3	CAN_H	
RJ45-4	485-VCC-5V*	
RJ45-5	N/A	
RJ45-6	CAN_L	
RJ45-7	485GND	
RJ45-8	N/A	
		<u> </u>


3.6 I/O 控制接线说明

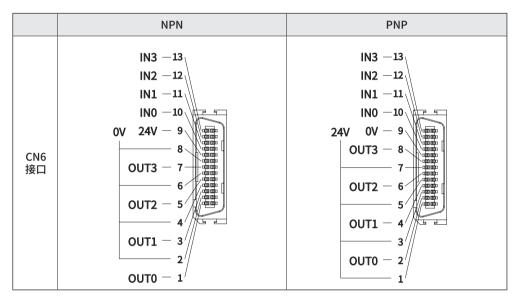
K1 端子为打开 I/O 控制及脉冲控制的开关 ;CN6 为 26 针的端口,是 I/O 控制以及脉冲控制的接口。 K1 的拨码说明及 CN6 的引脚说明如下所示。

	拨码说	明(K1 红色	总端子)	示例图		
	- (1)	I/O (2)	PULSE (3)	/ <i>Y//_\3</i> \		
ON		I/O 有效	脉冲有效	2 ON		
OFF	请保持	I/O 无效	脉冲无效			



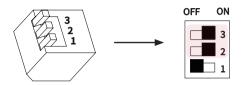
序号	标号	序号	标号	CN6 插头 - 示例图
1	OUT-DO	14	PUL-5V-P	13 / 26
2	OUT-SO	15	PUL-24V-P	12 \ / 25
3	OUT-D1	16	PUL-5V-N	11 \\\ 24
4	OUT-S1	17	PUL-24V-N	10 23
5	OUT-D2	18	Reserved	9 22
6	OUT-S2	19	Reserved	8 21
7	OUT-D3	20	Reserved	7 — — — 20
8	OUT-S3	21	Reserved	6 19
9	I/O-INCOM	22	Reserved	5 18
10	I/O-INO	23	DIR-5V-P	4 17
11	I/O-IN1	24	DIR-24V-P	3 /// \\\\16
12	IO-IN2	25	DIR-5V-N	2 // \\ 15
13	I/O-IN3	26	DIR-24V-N	1 1 14

RM-CEP


1. 使用 I/O 控制时,首先需要将 K1 端子中的 2 号拨码拨至 ON,打开 I/O 使能开关。

2. 确定上位机的 I/O 信号类型为 NPN 还是 PNP,确认后将 CN6 的针脚按照下图所示方式连接在上位机的输入输出 I/O 口上,确保连接处足够牢固,否则可能导致接触不良,造成 I/O 信号异常。

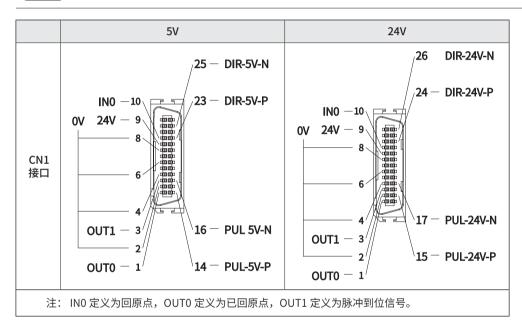
CN6 针脚为 SCSI26PIN 型针脚,可购买对应的 SCSI26P 公头连接器进行连接使用。

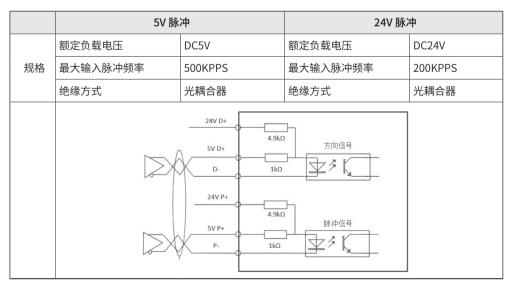


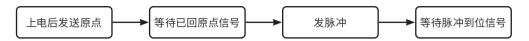
- 3. 连接完成后,需要打开上位机软件,根据实际工况需求配置对应的指令以及 I/O 输入输出引脚映射。具体配置流程可参考【4.8.4 外部 I/O 输入输出配置】。
- 4. RM-CEP 控制器为四进四出的 I/O 信号,I/O 信号的输入输出规格如下表所示。

	输	λ	输出		
	输入点数	4 点	输出点数	4 点	
+111+42	输入电压	DC24V±10%	输出电压	DC24V±10%	
规格	输入电流	5mA / 1 回路	负载电流	50mA	
	绝缘方式	光耦合器	绝缘方式	光耦合器	

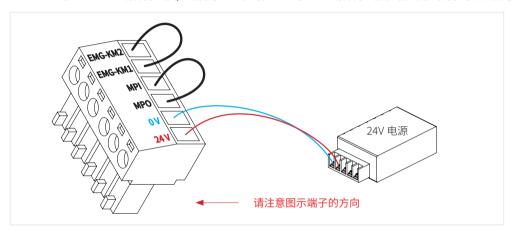
3.7 脉冲控制接线说明


1. 使用脉冲控制时,首先将控制器上 K1 端子的 2 和 3 拨码要拨至 ON,打开 I/O 使能和脉冲使能开关。


2. 确定要使用 24V 的脉冲信号还是 5V 的脉冲信号,确认后将 CN6 的针脚按照下图所示方式连接在上位机的脉冲控制接口上,DIR 为脉冲方向控制,PUL 为脉冲数量控制,可使用上位机将 IN0 对应的引脚定义为回原点,将 OUT0 和OUT1 定义为已回原点信号和脉冲到位信号,实现手动回原和接受回原、脉冲到位信号功能。


使用脉冲控制时,需要连接上位机,按照需求更改脉冲单位,即发一个脉冲走的距离,具体配置流程可参考【4.8.5 脉冲参数调整】。

3. 脉冲控制原理



4. 脉冲控制流程

3.8 电源模块接线说明

1. EMG-KM1 与 EMG-KM2 请保持短接;若使用 24V 供电,MPI 与 MPO 请保持短接,接线方式请参考下图所示。

2. 控制器上指示灯颜色及定义

正常使用时为绿灯和黄灯常亮,控制器报错时红灯会闪烁。

	000	0000	0000
状态	绿灯亮	黄灯亮	红灯亮
说明	通电正常	伺服开启	运行报警

4 RMS 软件调试平台的使用

请登录增广智能官方网址 (www.rmaxis.com) 服务与支持页面下载软件,或联系我司售后工程师获取 RMS 调试软件安装包。通过 RMS 软件调试平台,用户可以根据实际工艺需求对执行器进行运动指令设置、参数修改、控制监测等。RMS 软件调试平台界面简洁、友好、功能丰富。例如,只需通过简单的点位参数设置,即可快速完成执行器的运动控制设置。

4.1 软件运行

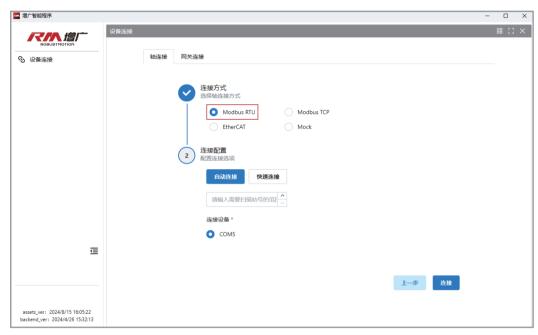
如果软件无法打开或无法正常运行(如出现闪退等情况),可能是由于所用电脑配置问题,请联系销售人员或售后工程师协助处理。

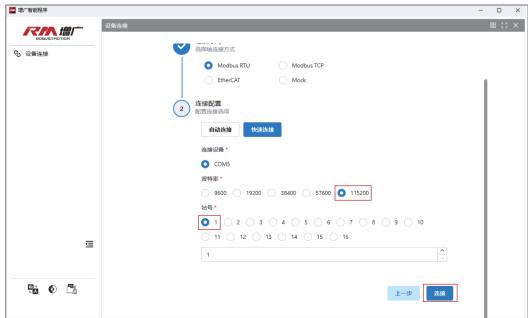
4.2 控制器接口接线确认界面

该页面仅为提醒用户确认控制器的端口接线是否无误,以免影响后续调试。确认接线无误,或本身使用的执行器为内置控制器的 ITG 一体式型号,可直接选择【跳过】。

点选当前控制器型号,右方会提示端口定义,以供确认。

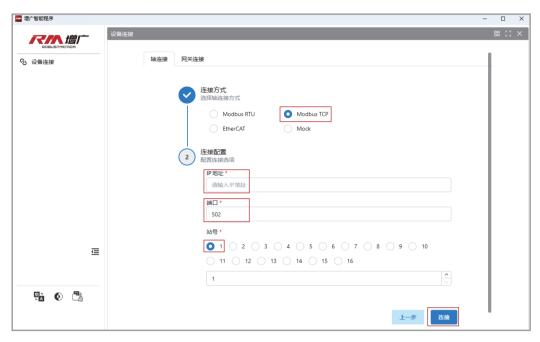
【确认无误,下一步】,进入【设备连接】界面。

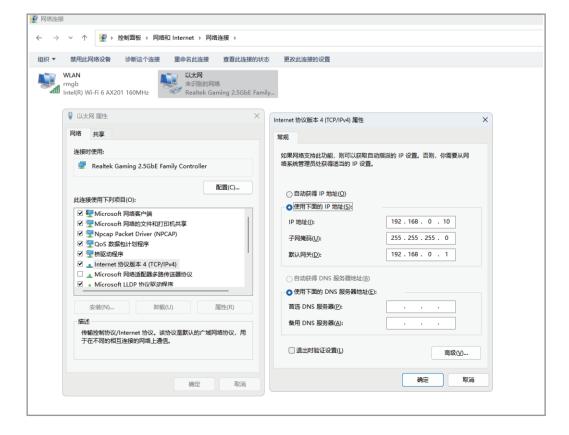

4.3 设备连接


进行执行器调试通常选择使用 Modbus RTU 通讯连接,以方便观察电动执行器的动作和初步调试。请确保 USB 转 485 调试头已正确连接控制器和 PC。(一体式型号的连接方式请参看【3.3 一体式连接面板的接线说明(ITG 系列)】,外置控制器的型号的连接方式请参看【3.5 总线控制的接线说明】。)

本软件提供 Modbus RTU、Modbus TCP 等通讯方式进行连接,具体连接方式如下:

4.3.1 Modbus RTU 连接方式


- 1. 【连接方式】请选择"Modbus RTU";
- 2. 【连接配置】波特率请选择"115200"(出厂默认); 站号选择"1"(出厂默认);
- 3. 点击【连接】。


4.3.2 Modbus TCP 连接方式

- 1. 【连接方式】请选择"Modbus TCP";
- 2. 【连接配置】IP地址: 192.168.0.233 (出厂默认);设备端口: 502 (出厂默认);站号: 1 (出厂默认);
- 3. 点击【连接】。

IP 地址查询:请确保当前所用 PC 的 IP 地址与控制器 IP 地址为同一网段。

举例:控制器 IP 地址默认出厂为 192.168.0.233, PC 的 IP 地址需要为 192.168.0.xxx。

4.3.3 主界面功能介绍

当界面左侧出现导航栏(如下图所示),则说明软件已成功连接到执行器 / 控制器。 每次软件连接到控制器时,软件将自动读取控制器内的当前参数。

4.4 指令编辑界面

点击导航栏【指令编辑】,出现下方界面。这是最常用的功能界面,用于执行器的控制、设置指令和运动状态显示。

4.4.1 界面功能介绍

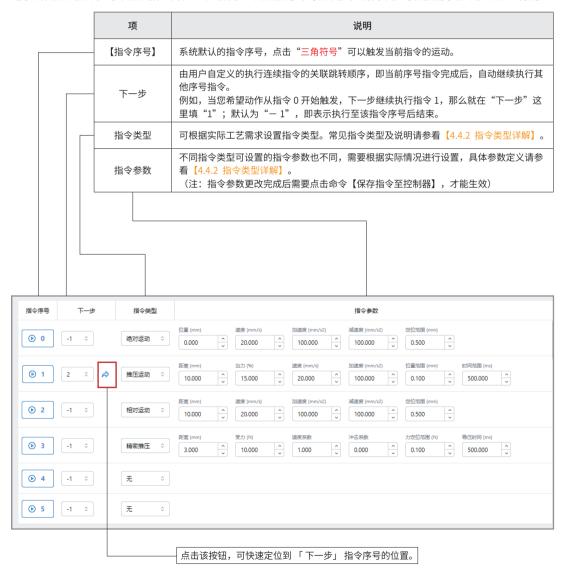
① 状态栏

实时读取并显示电动执行器当前的位置、速度、出力和受力(精密力控系列)等数据,以及当前执行的指令序号,可通过此界面的数据判断执行器的动作是否正常,以及时调整执行器的动作。

状态项	功能介绍
【位置】	执行器的当前位置(mm)。
【速度】	执行器当前的速度(mm/s)。
【出力】	执行器的当前出力(标准执行器产品显示出力的百分比(%))。※
【受力】	执行器当前受力(标准执行器产品不显示受力,精密力控型执行器显示的是当前的受力(N))。
【当前执行指令序号】	执行器当前正在执行的指令序号(对应下方指令编辑器的【指令序号】,停止状态下默认为 -1)。

※ 推压运动时,显示出力 % 为实际允许出力 %; 实际允许出力 %= 安全系数 x 设置出力 %。

② 命令栏


可通过此界面对电动执行器进行动作控制,包括前进和后退、初始化回原点、重置错误、开关伺服等,也可通过此 界面将其他控制器内的点位配置导入连接的控制器或导出当前的点位配置。

命令项	功能介绍	
【后退/前进】	是执行器 JOG 运动模式,在需要对执行器微调位置时使用。【后退】为 JOG -,【前进】为 JOG +。	
【停止】	用于停止执行器的指令运动。	
【初始化】	初始化动作是在执行器首次上电或断电重启后必须执行的操作。点击【初始化】并等待初始化完成后才能进行其他操作。点击【初始化】并等待初始化完成,当状态栏的"当前执行指令序号"信号从动态显示为"-1"时,才能进行其他操作。	

【重置错误】	是用于执行器报警时清除报警。点击左侧导航栏的运行状态,可以查看报警信息。注意,在清除报警前, 应先检查报警信息,方便提供给售后技术工程师进行故障排查。
【重置力】	用于执行器的力传感器置零,仅适用于调试精密力控型电动执行器时使用。
【打开 / 关闭伺服】	用于打开或关闭电动执行器伺服使能。也可通过左侧导航栏伺服开关,控制打开或者关闭伺服,当开关为蓝色时,伺服处于打开状态,反之关闭。
【保存指令至控制器】	每次新建或修改指令,都需要点击【保存指令至控制器】才能正式生效;也可以点击【从控制器读取指令】,验证当前指令是否有保存到控制器。
【从控制器读取指令】	可以从控制器读取指令,验证当前指令是否有保存到控制器。
【导出指令到文件】	保存参数文件到外部。
【从文件导入指令】	从外部导入参数文件。

③ 指令编辑器

用于编辑点位指令,每个点位指令代表一个动作,上升沿信号即可触发,控制简单,可根据需求修改参数值进行配置。

4.4.2 指令类型详解

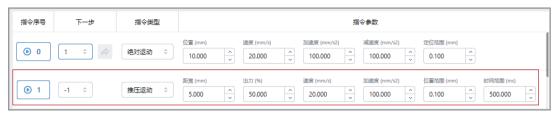
1. 【绝对运动】指令

【绝对运动】 是执行器以原点为参考点,运动到设定位置的运动指令。

指令参数	参数说明	
位置 mm	绝对运动的目标位置。设置数值小于对应产品型号参数的"最大行程值"。	
速度 mm/s	m/s 运动到目标位置的速度。设置数值范围小于对应产品型号参数的"最高速度值"。	
加速度 mm/s²	运动到目标位置的加速度。设置数值范围默认值 500mm/s²。	
减速度 mm/s ²	运动到目标位置的减速度。设置数值范围默认值 500mm/s²。	
用于设定到位信号的给出范围,默认值 0.1mm。若定位范围设定为 ±0.1mm,那么当执行器到达目标位置并且实际位置在目标位置 ±0.1mm; 会产生当前指令的定位完成信号。例:图中"指令 0"中,"定位范围"值设置为 0.1mm,"位置"值设定为 30mm,当执行器 29.9-30.1mm 范围内,控制器会输出"指令 0"的完成到位信号。 注:定位范围仅用于设置给出到位信号的范围,不影响执行器最终设定的运动到达位置。		

2. 【相对运动】指令

【相对运动】是执行器以当前位置为参考点,运动到设定位置的运动指令。



指令参数	参数说明	
距离 mm	目标位置相对于当前位置所需移动的一段距离。	
速度 mm/s	运动到目标距离的速度。设置数值范围小于对应产品型号参数的"最高速度值"。	
加速度 mm/s ²	运动到目标距离的加速度。设置数值范围默认值 500mm/s²。	
减速度 mm/s ²	² 运动到目标距离的减速度。设置数值范围默认值 500mm/s ² 。	
定位范围 mm	用于设定到位信号的给出范围,默认值 0.1mm。 若定位范围设定为 ±0.1mm,那么当执行器到达目标位置并且实际位置在目标位置 ±0.1mm 之内时,控制器 会产生当前指令的定位完成信号。 例: 图中"指令 1"中,执行器当前位置为"2mm",设置"定位范围"值为 0.1mm,"距离"值为 5mm,则当 执行器运动到实际位置 6.9-7.1mm 范围内,控制器会输出"指令 1"的完成到位信号。 注: 定位范围仅用于设置给出到位信号的范围,不影响执行器最终设定的运动到达位置。	

3. 【推压运动】指令

【推压运动】指令是指从当前位置开始,设置以额定出力(电流百分比)运动一段距离,直至力度到达设置值后保持。

· 对于电动夹爪来说,这是实现自适应夹持的重要指令,设置【绝对运动】+【推压运动】指令即可实现"快速接近柔性夹持"的动作。

指令参数	参数说明	
距离 mm	目标位置相对于当前位置所需移动的一段距离。输入的设置数值数值应大于目标位置相对于当前位置的实际距离。当设置的值大于对应执行器型号的最大行程值,则执行器可实现全行程的推压运动。	
出力%	以设定出力百分比(电流百分比)进行推压运动。	
速度 mm/s	运动到目标距离的速度。设置数值范围小于对应产品型号参数的"最高速度值",默认推荐值 20mm/s。	
加速度 mm/s² 运动到目标距离的加速度。设置数值范围默认值 100mm/s²。		
位置范围 mm	用于设定到位信号的给出范围,默认值 0.1mm。若位置范围设定为 ±0.1mm,那么当执行器到达目标位置并且实际位置在目标位置 ±0.1mm 之内时,控制器会产生当前指令的定位完成信号。 例:图中"指令 1","位置范围"设置为"0.1mm","距离"设置为"10mm"。则执行器运行到 9.9mm时输出"指令 1"到位信号。 注:位置范围仅用于设置给出到位信号的范围,不影响执行器最终设定的运动到达位置。	
时间范围 ms	判定力已稳定到位的时间范围值。图中指令 1,时间范围设置为 500ms,出力 50%。则执行器出力达到 50%,并保持 500ms 后,判定为力到位,同时输出指令 1 的到位信号。	

4. 【精密推压运动】指令 (仅适用于精密力控型电动执行器)

【精密推压运动】指令是指从当前位置开始,设置以精确的力值运动一段距离,直至力度到达设置值后保持。

- 当移动距离达到指令设定值,但传感器未达到指令设定受力值时,执行器停止运动,但对应指令无到位信号输出,即为空夹 / 空压。
- 当指令设定的移动范围内接触到物品,并且传感器受力值达到指令设定的受力值时,执行器在触发新的指令前会保持设定的受力值推压工件,并输出对应指令到位信号。

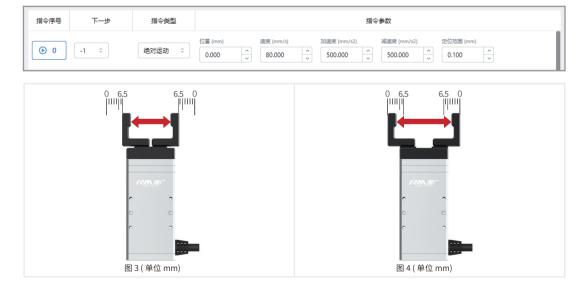
指令参数	参数说明
距离 (mm)	目标位置相对于当前位置所需移动的一段距离。输入的设置数值数值应大于目标位置相对于当前位置的实际距离。当设置的值大于对应执行器型号的最大行程值,则执行器可实现全行程的推压运动。
受力 (N)	执行器最终推压到工件的目标力值。图中指令 0 力定位范围设置为 0.1mm,受力 10N,时间范围 100ms,当 执行器出力达到 9.9N,并在 9.9N-10.1N 范围内保持 100ms,指令 0 会输出到位信号。
速度系数	相当于加速度。与受力数值大小成正比。同样的速度系数下,受力数值越大,运动速度越快。 调试时建议从小值慢慢增加。
冲击系数	备用参数,默认设置为 0 即可。
力定位范围(N)	图中指令 0 力定位范围设置为 $0.1N$,受力 $10N$,时间范围 $100ms$,当执行器出力达到 $9.9N$,并在 $9.9N$ - $10.1N$ 范围内保持 $100ms$,指令 0 会输出到位信号。
稳压时间 ms	判定力已稳定到位的时间范围值。图中指令 0 力定位范围设置为 0.1mm,受力 10N,时间范围 100ms,当执行器出力达到 9.9N,并在 9.9N-10.1N 范围内保持 100ms,指令 0 会输出到位信号。

4.5 指令编辑实例

4.5.1 快速定位运动 (常用于夹爪快速定位到张开位置或预夹位置)

1. 案例一: 【绝对运动】

举例,需要对 RM-MGBD-11-14(开闭行程:双侧为 13mm,单侧为 6.5mm) 夹爪姿态进行调整。当前,电动夹爪位于 0mm 位置(即夹爪手指在最外侧),状态如图 1;执行【绝对运动】指令将两侧手指尽量靠近,即夹爪需要运动到上限位 13mm 位置处,状态如图 2。具体的指令设置步骤如下:


首先,确定【绝对运动】的距离。因为夹爪手指的上限位为 13mm,因此【绝对运动】的"位置"数值设置为"13mm";"速度"设置为夹爪的推荐速度"80mm/s";"加/减速度"设置为推荐值"500mm/s²";"定位范围"设置为推荐值"0.1mm"。完成指令设置后点击【保存指令到控制器】,运行该指令后夹爪状态如图 2。

反之,现电动夹爪位于 13mm 位置(即夹爪手指在最内侧),状态如图 3;执行【绝对运动】指令将两侧手指尽量分开,即夹爪需要运动到下限位 0mm 位置处,状态如图 4。具体的指令设置步骤如下:

首先,确定【绝对运动】的距离。因为夹爪手指的下限位为 0mm,因此【绝对运动】的 "位置"数值设置为 "0mm"; "速度"设置为夹爪的推荐速度 "80mm/s"; "加/减速度"设置为推荐值 "500mm/s²"; "定位范围"设置为推荐值 "0.1mm"。完成指令设置后点击【保存指令到控制器】,运行该指令后夹爪状态如图 4。

2. 案例二: 【相对运动】

举例,需要对 RM-MGBD-11-14(开闭行程:双侧为 13mm,单侧为 6.5mm) 夹爪姿态进行调整。当前,电动夹爪位于 0mm 位置(即夹爪手指在最外侧),状态如图 5;执行【相对运动】指令将两侧手指尽量靠近,即夹爪需要运动到 13mm 位置处,状态如图 6。具体的指令设置步骤如下:

首先,确定【相对运动】的距离。因为夹爪手指的当前位置为 0mm,目标位置为 13mm,则夹爪手指需前移 13mm(13mm-0mm=13mm),因此【相对运动】的"距离"数值设置为"13mm";"速度"设置为夹爪的推 荐速度"80mm/s";"加/减速度"设置为推荐值"500mm/s";"定位范围"设置为推荐值"0.1mm"。完成 指令设置后点击【保存指令到控制器】,运行该指令后夹爪状态如图 6。

反之,现电动夹爪位于13mm位置(即夹爪手指在最内侧),状态如图7;执行【相对运动】指令将两侧手指尽量分开,即夹爪需要运动到下限位0mm位置处,状态如图8。具体的指令设置步骤如下:

首先,确定【相对运动】的距离。因为夹爪手指的当前位置为 13mm,目标位置为 0mm,则夹爪手指需后移 13mm (0mm-13mm=-13mm);因此【相对运动】的 "距离" 数值设置为 "-13mm"; "速度" 设置为夹爪的推荐速度 "80mm/s"; "加/减速度"设置为推荐值 "500mm/s²"; "定位范围"设置为推荐值 "0.1mm"。完成指令设置后点击【保存指令到控制器】,运行该指令后夹爪状态如图 8。

4.5.2 快速柔性推压 (常用于夹爪快速柔性夹持或外撑工件)

电动夹爪运动不能只设置【绝对运动】/【相对运动】单个指令进行夹持工件,否则会产生报警。

1. 案例一: 【绝对运动】+【推压运动】

举例,使用 RM-MGBD-11-14 (开闭行程:双侧为 13mm,单侧为 6.5mm)夹爪,向内抓取一个外径约 40mm 大小工件。 当前夹爪在位置 0mm 并且夹爪一侧手指与工件之间的距离约为 5 mm,状态如图 9。

具体操作步骤如下:

① 设置运动【绝对运动】指令

首先,确定【绝对运动】的距离。因为一侧夹爪手指与工件之间的距离为 5 mm,需要尽可能地让手指接近工件。因此,夹爪两个手指的移动距离应小于且接近 10 mm,所以这里就取接近值设置为 "8mm" (0mm+8mm=8mm); "速度"设置为夹爪的推荐速度 "80mm/s"; "加减速度"设置为推荐值 "500mm/s²"; "定位范围"设置为推荐值 "0.1mm"。完成指令设置后点击【保存指令到控制器】,即可完成用【绝对运动】指令设置的快速接近动作,运行该指令后夹爪状态如图 10。

② 设置运动【推压运动】指令

现在,夹爪一侧手指与工件距离约为 1mm。此时设置下一步指令【推压运动】,夹爪推压"距离"的数值必须大于快速接近后手指与工件之间的总距离 2mm。所以,建议在此"距离"数值上额外再内夹 3mm(内夹为正值),以确保即使工件大小或位置有轻微变化时,手指仍然能正常推压到工件。因此,推压运动的"位置"数值设置为"5mm"(2mm+3mm=5mm);"出力 %"设为夹爪最大出力的"50%";"速度"设置为推荐速度"20mm/s";"加减速度"设置为推荐值"100mm/s²";"定位范围"设置为推荐值"0.1mm";"时间范围"设置为推荐值"100ms"。完成指令设置后点击【保存指令到控制器】,即可完成用【推压运动】指令设置的柔性夹持动作,运行该指令后夹爪状态如图 11。

若需要夹爪执行完【绝对运动】后自动执行【推压运动】,可将【绝对运动】的【下一步】参数值设为【推压运动】 所在的序号。完成指令设置后点击【保存指令到控制器】,即可完成两个指令的连续运动,最终设置的完整指令如 下图所示。

2. 案例二: 【绝对运动】+反向【推压运动】

举例,使用 RM-MGBD-11-14 (开闭行程: 双侧为 13mm,单侧为 6.5mm) 夹爪,外撑抓取一个内径约 25mm 大小工件。 当前夹爪在位置 13mm 并且夹爪一侧手指与工件之间的距离约为 6 mm,状态如图 12。

具体操作步骤如下:

① 设置运动【绝对运动】指令

首先,确定【绝对运动】的距离。因为一侧手指夹爪手指与工件之间的距离为 6 mm,需要尽可能地让手指接近工件。因此,夹爪两个手指要向外移动的距离应小于且接近 12 mm,这里就取接近值 10mm,所以【绝对运动】的"位置"参数设置为"3mm"(13mm-10mm=3mm);"速度"设置为夹爪的推荐速度"80mm/s";"加减速度"设置为推荐值"500mm/s²";"定位范围"设置为推荐值"0.1mm"。完成指令设置后点击【保存指令到控制器】,即可完成用【绝对运动】指令设置的快速接近动作,运行该指令夹爪状态如图 13。

② 设置运动【推压运动】指令

现在,夹爪一侧手指与工件距离约为 1mm。此时设置下一步指令【推压运动】,夹爪推压 "距离"的数值必须大于快速接近后手指与工件之间的总距离 2mm。所以,建议在此 "距离"数值上额外再外撑 1mm(外撑为负值),以确保即使工件大小或位置有轻微变化时,手指仍然能正常推压到工件。因此,推压运动的 "位置"数值设置为 "-3mm"(-2mm-1mm=-3mm); "出力 %"设为夹爪最大出力的 "50%"; "速度"设置为推荐速度 "20mm/s"; "加减速度"设置为推荐值 "100mm/s²"; "定位范围"设置为推荐值 "0.1mm"; "时间范围"设置为推荐值 "100ms"。完成指令设置后点击【保存指令到控制器】,即可完成用【推压运动】指令设置的柔性夹持动作,运行该指令夹爪状态如图 14。

若需要夹爪执行完【绝对运动】后自动执行【推压运动】,可将【绝对运动】的【下一步】参数值设为【推压运动】 所在的序号。完成指令设置后点击【保存指令到控制器】,即可完成两个指令的连续运动,最终设置的完整指令如 下图所示。

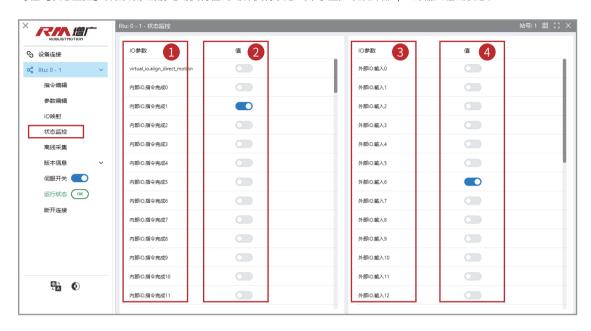
4.6 离线采集界面

离线采集界面可以实时采集当前位置、当前出力、目标位置和当前受力,并生成数据和时间的曲线,也可将数据导出至 Excel 表格中进行分析。

1. 数据采集设置

2. 数据采集命令

数据采集命令,可以直接进行"当次采集"、"连续采集",还可以针对某个指令进行采集。


3. 曲线数据

数据采集命令,可以直接进行"当次采集"、"连续采集",还可以针对某个指令进行采集。

4.7 状态监控界面

可在【状态监控】界面观察当前电动执行器的动作执行状态(布尔量)以及外部 I/O 的输入输出状态。

4.7.1 左侧状态栏

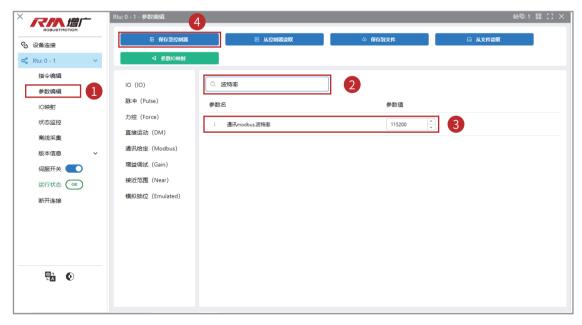
左侧状态为电机当前动作执行状态,①为状态参数名称,②为当前的状态。

指令完成信号状态说明:

- 1. 当"指令编辑"里设置点位指令 0 为 【绝对运动】
 - 当执行器执行完该动作指令,且当前位置在目标位置的定位范围内,此信号会置 ON。
- 2. 当"指令编辑"里设置点位指令 0 为【推压运动】/【精密推压运动】
 - 当执行器执行完该动作,且当前位置在目标位置的位置范围内,此信号会置 ON,同时状态监控中的"位置到达"信号也置 ON;用户可从这两个信号判断当前动作为空夹 / 空推。
 - 当执行器执行完该动作,并电机出力到达设定的出力值时且当前位置不在目标位置的位置范围内,此信号会置 ON,同时状态监控中的"位置到达"信号也置 OFF; 用户可从这两个信号判断当前动作为夹持 / 推压到工件。

4.7.2 右侧状态栏

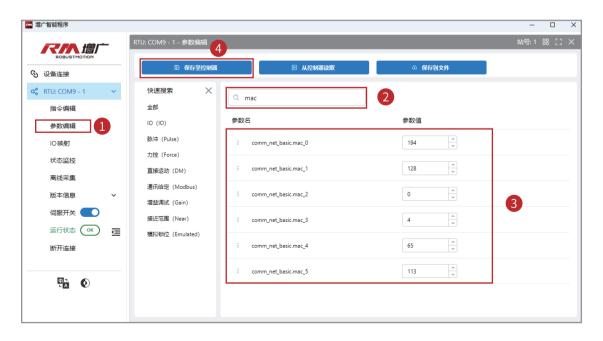
右侧状态栏为外部 I/O 状态, ③为外部状态参数名称, ④为外部当前状态。


- 使用 I/O 控制时可通过状态监控来观察有无受到来自外部的 I/O 信号,或观察是否正常给出 I/O 信号,可帮助排查 I/O 控制时出现的问题。
- ・ 如当受到外部给予的输入信号 IN0 时,外部 I/O 输入 0 会置 ON,当配置的 I/O 输出 OUT0 映射状态为 ON 时,外部 I/O 输出 0 会置 ON。

4.8 参数编辑界面

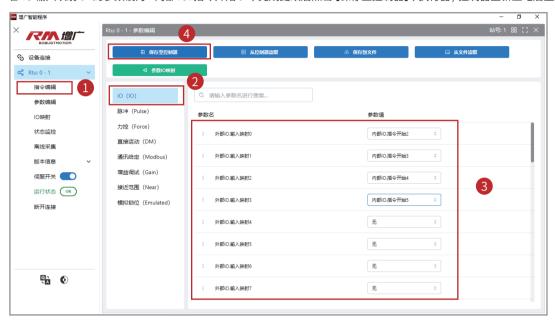
4.8.1 更改站号、波特率


首先使用 RTU 连接控制器,连接完成后点击参数编辑,在参数编辑中搜索"站号",可以更改所连接控制器的站号,站号范围: 1-255,更改完成后,再搜索"波特率",可将波特率更改为所需值,一般更改为 9600、19200、38400、57600、115200 等值,完成更改后点击【保存至控制器】,执行器 / 控制器重新上电后生效。如下图所示。


4.8.2 更改 IP 地址

如果使用 TCP 通讯则需要更改控制器的 IP 地址,首先使用 RTU 连接控制器,连接完成后点击参数编辑,在其中搜索 "IP",更改控制器的 IP 地址,完成更改后点击【保存至控制器】,执行器 / 控制器重新上电后生效。

4.8.3 更改 MAC 地址


如果总线上有多台设备的情况下,需要给每台设备设置唯一 MAC 地址,首先使用 RTU 连接控制器,连接完成后点击参数编辑,在其中搜索 "MAC",更改控制器的 MAC 地址,完成更改后点击【保存至控制器】,执行器 / 控制器重新上电后生效。

4.8.4 外部 I/O 输入输出配置

使用 I/O 控制时,如需在控制器内配置外部 I/O 映射, 要先用 Modbus RTU 等方式连接软件,在【参数编辑】左侧菜单栏选择"I/O",找到【外部 I/O. 输入映射】和【外部 I/O. 输出映射】。其中【外部 I/O. 输入映射 0】对应执行器实际 I/O 接线中的 INO,【外部 I/O. 输出映射 0】对应执行器实际 I/O 接线中的 OUTO。可根据实际需求配置 I/O 映射的对应的输入和输出信号。

例如:若用户需要用外部 I/O 输入映射 0(对应执行器 I/O 接口 INO),来触发【指令编辑】里的点位指令 0,只需要把"外部 IO 输入映射 0"的参数设为 "内部 IO. 指令开始 0",完成更改后点击【保存至控制器】,执行器 / 控制器重新上电后生效。

4.8.5 脉冲参数调整

使用脉冲控制时,如需在控制器内配置脉冲参数, 要先用 Modbus RTU 等方式连接软件,在【参数编辑】左侧菜单栏选择"脉冲",找到并启用【规划器.脉冲控制使能】和【内部 IO.脉冲模式使能】两个参数。

【脉冲追踪器 . 脉冲单位】默认为 1mm,即 1 个脉冲走 1mm;也可根据实际情况进行参数更改。完成更改后点击【保存至控制器】,执行器 / 控制器重新上电后生效。

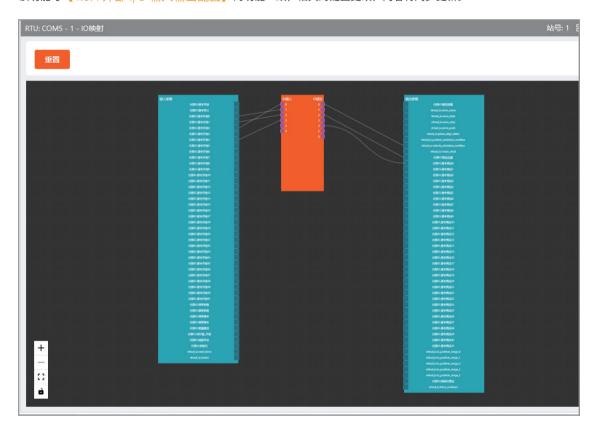
4.8.6 上电回原点设置

执行器执行推压运动后(手指张开),请勿使用"初始化"指令进行张开。请设置绝对运动至"0mm"实现"返回原点端"或运动至期望位置。

执行器出厂前已经设置为默认自动回原点,一般情况无需手动操作。电动执行器如需"启用"或"取消"上电自动回原点,需要先通过 Modbus RTU 等方式连接软件,在【参数编辑】搜索"自动开始",找到【指令管理器.自动开始指令序号】。 当【指令管理器.自动开始指令序号】参数设置为"34"时,执行器启用上电自动执行回原点动作;当该参数设置为"-1"时,执行器取消上电自动执行回原点动作,完成更改后点击【保存至控制器】,执行器/控制器重新上电后生效。

4.8.7 回原方向反转

如需修改回原点方向,需要先用 Modbus RTU 等方式连接软件,在【参数编辑】搜索"逻辑方向",找到【驱动.逻辑方向】。 【驱动.逻辑方向】有效输入值为"-1"和"1"。若当前默认值为"1"时,回原方向反转则需要把该值更改为"-1"。 反之,若当前默认值为"-1"时,回原方向反转则需要把该值更改为"1"。完成更改后点击【保存至控制器】,执行器/控制器重新上电后生效。



4.9 I/O 映射界面

【I/O 映射】是对I/O 进行输入输出配置的另一种简便方法。点击左侧导航栏的【I/O 映射】,通过把左右两侧输入输出参数,与中间的 I/O 接口连线,就可以把 I/O 接口和需要的功能关联起来,实现 I/O 自定义。

选中连线,按键盘 DELETE,可删除连接。

该功能与【4.8.4 外部 I/O 输入输出配置】的功能一致,相关的配置更改,两者将同步更新。

5 Modbus RTU 通讯指南

在使用 Modbus RTU 通讯时,需要对应功能码和地址来进行电动夹爪动作控制和电动夹爪参数修改。 注:案例中使用的 Modbus 地址均为十进制。

5.1 功能码地址说明

5.1.1 02H 功能码

02H 功能码的作用是读取输入状态,也就是读取一个数字量输入 (Digital Input, DI) 接点的状态,可以使用 02H 功能码来读取电动执行器当前的一些状态,比如错误报警信号(地址: 0)和初始化完成信号(地址: 1037),还可以读取自定义点位的完成信号(地址: 1000-1015),来进行自动化逻辑判断。

初始化完成信号为常 ON 信号,在上电第一次进行初始化后都为 ON,如需更改信号类型,请联系我司工程师更改。

名称	功能码	地址(十进制)	寄存器数量	数据类型	功能
错误报警		0	1		读取报警信号
位置超差报警		1	1		读取位置超差报警信号
速度超差报警		2	1		读取速度超差报警信号
电机堵转		3	1	bool	读取电机堵转报警信号
目标位置到达	02H	8	1		读取目标位置到达信号
到位信号 0		1000	1		控制器已到位 0
到位信号 n		1000+n	1		控制器已到位 n
到位信号 15		1015	1		控制器已到位 15
初始化完成		1037	1		初始化完成信号(已回原点)

5.1.2 03H / 10H 功能码

03H 功能码为读取保持寄存器。用于在从站的保持寄存器中读取一个或多个 16 位的数值。

10H 功能码为预置多个寄存器,用于向从站的寄存器内写入所需数值。

可使用 03H 功能码来读取当前的力矩(地址: 2154),占用两个寄存器。

名称	功能码	地址(十进制)	寄存器数量	数据类型	功能
当前力矩 %	03H	2154	2	real	读取当前力矩

03H 功能码:

可使用 03H 功能码读取定位模式中位置(地址: 2284)、速度(地址: 2286)、加速度(地址: 2288)、力矩(地址: 2290)和力矩开关(地址: 2282)的实际值(控制器内部寄存器的值),可用来比较是否与上位机写入的值一致,其中位置、速度、加速度、力矩等占用 2 个寄存器,而力矩模式开关占用 1 个寄存器。

10H 功能码:

可通过 10H 功能码向定位模式对应的地址中写值,写值顺序为:①设置力矩,②设置目标加速度,③设置目标速度,④设置目标位置。在设置完目标位置后即可直接按照设定的值走到对应位置。

- 1. 如需使用电动夹爪夹持工件,则需将力矩模式开关打开,打开后才可进行夹持,否则会导致电动夹爪报错;点 位模式与定位模式为两种不同的模式,故不会相互干涉,在触发点位动作后需要将当前位置赋值进位置寄存器, 否则位置寄存器内的值不会自行改变,下次设置同样的位置会默认位置未改变,不会触发电动夹爪的动作。
- 2. 指令类型、下一步指令 modbus 地址数据类型为双整数。

定位模式									
名称	功能码	地址(十进制)	寄存器数量	数据类型	功能				
设置目标位置		2284	2	real	设置目标位置(mm)				
设置目标速度		2286	2	real	设置目标速度(mm/s)				
设置目标加速度	读 03H/ 写 10H	2288	2	real	设置目标加速度(mm/s²)				
设置力矩	与 10H	2290	2	real	设置力矩(%);力矩模式是力矩(%) = "1"时为绝对运动,<1 时为推压运动。				
力矩模式开关		2282	1	int	开关设置力矩模式。 (开启功能: 1,关闭功能: 0)				

点位模式中的点位参数也可使用 03H 功能码来进行读取和 10H 功能码来进行写入对应参数,具体地址如图所示。

	15 点位编辑器参数修改									
指令序号	指令类型	下一步 执行指令		指令参数地	址按照各指令	令类型相关 <i>参</i>	数顺序排列		功能码	寄存器数量
0	5000	5002	5004	5006	5008	5010	5012	5014		
1	5016	5018	5020	5022	5024	5026	5028	5030		
2	5032	5034	5036	5038	5040	5042	5044	5046		
3	5048	5050	5052	5054	5056	5058	5060	5062		
4	5064	5066	5068	5070	5072	5074	5076	5078		
5	5080	5082	5084	5086	5088	5090	5092	5094		
6	5096	5098	5100	5102	5104	5106	5108	5110		
7	5112	5114	5116	5118	5120	5122	5124	5126	写 10H	2
8	5128	5130	5132	5134	5136	5138	5140	5142	读 03H	2
9	5144	5146	5148	5150	5152	5154	5156	5158		
10	5160	5162	5164	5166	5168	5170	5172	5174		
11	5176	5178	5180	5182	5184	5186	5188	5190		
12	5192	5194	5196	5198	5200	5202	5204	5206		
13	5208	5210	5212	5214	5216	5218	5220	5222	1	
14	5224	5226	5228	5230	5232	5234	5236	5238		
15	5240	5242	5244	5246	5248	5250	5252	5254		

举例指令序号 0								
绝对运动	指令类型	下一步执行指令	位置	速度	加速度	减速度	定位范围	
地址	5000	5002	5004	5006	5008	5010	5012	

举例指令序号 0								
推压运动	指令类型	下一步执行指令	距离	速度	加速度	出力 %	时间范围	定位范围
地址	5000	5002	5004	5006	5008	5010	5012	5014

指令类型序号说明								
指令类型	数值							
无	0							
设置原点	1							
延时	2	*/DUCA C.D. 0. 1/D. 1/C						
绝对运动	3	举例指令序号 0 为例子:指 令类型的 modbus 地址为 5000;						
推压运动	4	5000=1,指令类型为设置原点。						
相对运动	5	5000 = 3, 指令类型为绝对运动。 指令类型的数据类型为双整数。						
精密推压	6	1日《天王印频师天王/7从正频。						
重置力	7							
停止	8							
执行并采集	9							

指令类型说明							
指令说明	指令参数	数据类型					
设置原点	原点偏移量 mm	数据类型为浮点数					
延时	时间 ms	数据类型为双整数					
	位置 mm						
	速度 mm/s						
绝对运动	加速度 mm/s²	数据类型为浮点数					
	减速度 mm/s²						
	定位范围 mm						
	距离 mm						
	速度 mm/s						
推压运动	加速度 mm/s²	数据类型为浮点数					
推压运动	出力 %	·					
	位置范围 mm						
	时间范围 ms						
	位置 mm						
	速度 mm/s						
相对运动	加速度 mm/s²	数据类型为浮点数					
	减速度 mm/s²						
	定位范围 mm						
	距离 mm						
	カN						
精密推压	速度系数	数据类型为浮点数					
相當推压	冲击系数	·					
	力定位范围 N						
	稳压时间 ms						
	采集频率 khz						
	采集数量						
执行并采集	采集频道个数	数据类型为双整数					
	频道 0						
	频道 n						

5.1.3 04H 功能码

04H 功能码为读取输入寄存器。用于在从站的输入寄存器中读取一个或多个 16 位的数值。可使用 04H 功能码来读取当前的位置(地址:0)、速度(地址 2)和力传感器的读数(地址 16),这些数据各占用两个寄存器。此功能可以实时读取电夹爪的位置、速度、传感器受力等参数,方便实时观测电动执行器状态或进行自动化流程条件判断。

名称	功能码	地址(十进制)	寄存器数量	数据类型	功能
当前位置		0	2		读取电机当前位置
当前速度	04H	2	2	real	读取电机当前速度
传感器当前读数(N)		16	2		读取传感器读数

5.1.4 05H 功能码

05H 功能码的作用是强置单线圈,也就是置某一 DO 接点为 ON 或 OFF,可以使用 05H 功能码来触发一些数据类型为 bool 量的动作,如图所示。

名称	功能码	地址(十进制)	寄存器数量	数据类型	功能
重置错误		0	1		上升沿触发控制器重置错误。
伺服开关		1	1		设置伺服开关状态。 (写 0 无使能,写 1 上使能)
指令开始		2	1		上升沿触发控制器指令开始。 (需要搭配指定序号使用,建议直接使用下方直接执 行点位序号即可)
指令停止		3	1		上升沿触发控制器指令停止。
保存参数	05H	9	1	bool	上升沿触发控制器保存参数。 (保存执行器运行参数,仅限调试时候使用)
保存点位指令		11	1		上升沿触发控制器保存点位编辑器所有指令。 (保存修改目标位置、速度、加速度等指令参数)
重置力		16	1		上升沿触发控制器重置受力数值。
初始化		17	1		上升沿触发控制器初始化(回原点)。
执行点位 0		1000	1		上升沿触发控制器执行点位 0。
执行点位 n		1000+n	1		上升沿触发控制器执行点位 n。
执行点位 15		1015	1		上升沿触发控制器执行点位 15。

除了伺服开关的指令需要一直置 ON,其他的指令触发都为上升沿触发,触发方式为先写 0 再写 1,若重复写入 1 则不能正常触发动作。

5.2 Modbus 通讯报文示例

Modbus RTU(Remote Terminal Unit)通讯报文格式遵循一种严格的二进制格式,适用于串行通信,尤其常见于工业自动化环境中的设备通信。以下是一般 Modbus RTU 报文的组成部分:

项	说明
设备地址 (Device Address)	一个字节,范围从 0x00 到 0x7F(0 至 247 十进制),0x00 地址通常用于广播,其他地址用于指定某一特定设备。※
功能码 (Function Code)	一个字节,标识请求的具体动作,例如读取线圈状态(0x01)、读取离散输入状态(0x02)、读取保持寄存器(0x03)、写单个保持寄存器(0x06)等。
数据区 (Data Field)	根据功能码的不同,后面跟随若干个字节,用于携带必要的数据,如寄存器地址、寄存器数量、读/写的数据值等。
校验码 (Checksum)	两个字节的循环冗余校验(CRC)值,用于检测报文在传输过程中是否发生错误。

[※] 我司产品均可通过广播方式控制网络内的所有电动执行器同步运动,同时可采用轮询的方式获取各执行器的状态。

一个典型的 Modbus RTU 报文示例如下所示。

【设备地址】	【功能码】	【数据格式】	【CRC 高字节】	【CRC 低字节】
8bit	8bit	N*8bit	8bit	8bit

实际的 CRC 值是由整个报文(不含 CRC 自身)通过特定算法计算得出的。在发送和接收时都需要进行 CRC 校验以确认报文完整性。同时,报文之间无额外填充字符或间隔,相邻报文之间通过最小的停顿时间进行区分。

5.2.1 读取当前位置 / 速度 / 力矩

01 04 00 00 00 02 71 CB (读取当前位置)

- 01 代表从站地址,表示向站号为1的设备发送报文;
- 04 代表功能码,表示读取输入寄存器的值,输入寄存器,就是保存外部输入信号数字量的寄存器;
- 00 00 代表地址,为十六进制地址,表示要读取的起始地址,00 00 对应地址 0;
- 00 02 代表数据长度,表示读取两个寄存器;
- 71 代表 CRC 校验低字节;
- · CB 代表 CRC 校验高字节。

这条报文表示使用 04H 功能码读取从站 1 的寄存器,从地址 0 开始读取两个寄存器,对应地址表可以知道这条报文的作用是读取从站 1 的当前位置。

同理,读取速度、力矩等参数只需更换功能码和地址即可。

5.2.2 读取当前报警信号 / 动作完成信号

01 02 00 00 00 01 B9 CA (读取当前报警状态)

- 01 代表从站地址,表示向站号为1的设备发送报文;
- 02 代表功能码,表示读取输入状态,也就是读取一个数字量输入;
- 00 00 代表地址, 为十六进制地址, 表示要读取的起始地址, 00 00 对应地址 0;
- 00 01 代表数据长度,表示读取一个输入状态;
- B9 代表 CRC 校验低字节;
- · CA 代表 CRC 校验高字节。

这条报文表示使用 02H 功能码读取从站 1 的输入状态,从地址 0 开始读取一个输入状态,对应地址表可以知道这条报文的作用是读取从站 1 的当前错误报警状态。

同理,读取点位完成信号、回原点完成信号等参数只需更换地址即可。

5.2.3 读取当前力矩 / 点位参数信息

01 03 08 6A 00 02 E6 77 (读取当前力矩)

- 01 代表从站地址,表示向站号为1的设备发送报文;
- 03 代表功能码,表示读取保持寄存器,保持寄存器,就是其值不被外部输入信号改变的寄存器;
- 08 6A 代表地址,为十六进制地址,表示要读取的起始地址,08 6A 对应地址 2154;
- 00 02 代表数据长度,表示读取两个保持寄存器;
- **E6** 代表 CRC 校验低字节;
- 77 代表 CRC 校验高字节。

这条报文表示使用 03H 功能码读取从站 1 的保持寄存器,从地址 2154 开始读取两个保持寄存器,对应地址表可以知道 这条报文的作用是读取从站 1 的当前力矩。

同理,读取点位模式的参数、读取定位模式的保持寄存器内的值等只需更换地址即可。

5.2.4 设置点位参数 / 定位模式参数

写入参数时需要进行浮点数转 16 进制和高低位转换操作,高低位转换(Endian conversI/On)是为了解决不同计算机系统间数据存储顺序的差异。主要原因包括:

- 1. 系统架构差异:不同系统可能采用小端序(低位在前)或大端序(高位在前);
- 2. 网络通信: 网络协议通常规定统一的字节序,以确保数据在不同系统间正确传输;
- 3. 数据一致性:确保跨平台应用中数据的正确性和一致性;
- 4. 性能优化:根据处理器的特点,优化数据访问以提高效率;
- 5. 兼容性: 与现有软件库和数据格式保持兼容。

故在进行写入点位模式参数或定位模式参数时需要先将浮点数转换为 16 进制数,再进行高低位转换后写入控制器。

Modbus RTU 通讯指南

如需要将浮点数 20 写入控制器,首先将 20 转换为十六进制数,将浮点数 20 转换为 16 进制数为 41 A0 00 00,进行高低位转换后为 00 00 41 A0。

故将浮点数 20 写入控制器的报文为: 01 10 08 EC 00 02 04 00 00 41 A0 AA 5A

- 01 代表从站地址,表示向站号为1的设备发送报文;
- 10 代表功能码, 10 (十六进制) 的作用是预置多寄存器;
- 08 EC 代表地址,为十六进制地址,表示要设置的起始地址,08 EC 对应地址 2284;
- 00 02 代表写入寄存器个数;
- 04 代表写入值字节数;
- 00 00 41 A0 代表写入值,即浮点数 20 转换为 16 进制再进行高低位转换后的值;
- · AA 代表 CRC 校验低字节;
- 5A 代表 CRC 校验高字节。

这条报文表示使用 10H 功能码预置从站 1 的寄存器,从地址 2284 开始写入两个寄存器,写入的数为长度 4 个字节的浮点数 20,对应地址表可以知道这条报文的作用是将浮点数 20 写入位置模式的位置寄存器。

同理,设置点位模式的参数、设置定位模式的参数值等只需更换地址和写入的数值即可。

5.2.5 触发重置错误/伺服开关/指令停止/重置力(精密力控)/初始化/执行点位动作

01 05 00 00 FF 00 8C 3A (重置错误)

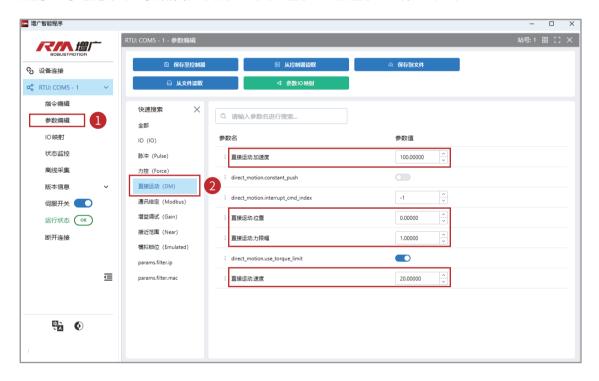
01 05 00 00 00 00 CD CA (复位重置错误)

- 01 代表从站地址,表示向站号为1的设备发送报文;
- 05 代表功能码,作用是强置单线圈,也就是置某一 DO 接点为 ON 或 OFF;
- 00 00 代表地址,为为十六进制地址,表示要设置的起始地址,00 00 对应地址 0;
- FF 00 代表写入值,即 ON;
- 8C 代表 CRC 校验低字节;
- 3A 代表 CRC 校验高字节。

这条报文表示使用 05H 功能码强置从站 1 内的线圈,强置地址为 0 的线圈 ON。对应地址表可以知道这条报文的作用是强置触发重置错误指令。

同理,指令停止 / 重置力(精密力控) / 初始化 / 执行点位动作等只需更换地址和写入的数值即可。伺服开关需要保持置 ON 才能正常动作。

使用 05H 功能码触发动作时需要先写 0 再写 1,控制器截取一个上升沿触发对应功能,如一直置 1 会导致动作无法连续触发("伺服开关"功能除外。设置该寄存器为 1 时,保持使能状态;设置该寄存器为 0 时,为无使能)。


5.3 定位模式使用说明

5.3.1 定位模式介绍

定位模式又称为位置模式。在定位模式下,需先写入力距、加速度和速度等参数,最后写入目标位置参数。目标位置参数写入后执行器将立即执行动作,无需触发启动信号;如果只写入目标位置参数而不写入其他参数,执行器将不会执行任何动作。当写入的力矩值为"1"时,电动执行器将执行绝对运动;而当设定的力矩值小于"1"时,电动执行器将执行推压运动,即力矩模式。

定位模式下的触发逻辑是基于差异检测。当写入的值与驱动器当前值不同时,执行器会触发动作以匹配新值;如果写入的值与驱动器中的值相同,则执行器不会有任何动作。如:当前寄存器位置值为 0,设置位置寄存器值为 0.5mm 时就会触发动作。

定位模式中通过上位机写入的值可以通过 RMS 软件调试平台读取到。打开 RMS 软件调试平台中的【参数编辑】,选择"直接运动",即可读取到驱动器内定位模式中的参数值。其中,【直接运动. 速度】、【直接运动. 加速度】、【直接运动. 力限幅】、【直接运动. 位置】分别对应通讯地址表中的"速度"、"加速度"、"力矩"和"位置"。

力矩开关开启时,写入力矩 <1 才为推压模式。可在 RMS 软件调试平台中的参数编辑, 搜索 "direct_motion.use_torque_limit" 打开开关。

5.3.2 Modbus RTU 实例(使用定位模式执行夹持/张开动作)

1. 变更参数并进行绝对运动(可用于夹爪张开或快速接近动作)

例子: 变更目标位置 / 速度 / 加减速度 / 力矩并驱动电动执行器进行绝对运动。

目标动作参数			
目标位置(mm)	速度(mm/s)	加速度(mm/s²)	力矩
40	80	500	1 (100%)

• 将速度设为 80mm/s

发送: 01 10 08 EE 00 02 04 00 00 42 A0 2B 73

返回: 01 10 08 EE 00 02 23 9D

· 将加速度设为 500mm/s²

发送: 01 10 08 F0 00 02 04 00 00 43 FA 2A 58

返回: 01 10 08 F0 00 02 43 9B

• 将力矩设为 1(100%)※

发送: 01 10 08 F2 00 02 04 00 00 3F 80 0A A2

返回: 01 10 08 F2 00 02 E2 5B

※ 当电动执行器需要执行绝对运动时,力矩必须设为1(100%)。

• 以 40mm 的位置为目标位置进行动作 ※

发送: 01 10 08 EC 00 02 04 00 00 42 20 AB 0A

返回: 01 10 08 EC 00 02 82 5D

(移动开始)

※ 在定位模式下,需要先设置力距、加速度、速度,最后再设置目标位置。如果仅设置目标位置而没有设置其他参数,执行器将不会有任何动作。

判断电动执行器是否已到达目标位置:

判断范围	
速度	当前速度低于 2mm/s。
位置	当前位置与目标位置的偏差在 ±0.1mm 以内。

• 读取当前速度

发送: 01 04 00 02 00 02 D0 0B

返回: 01 04 04 5A CB 3F 0B C8 95 (03D8 4220 转换浮点数 为 0.5443541mm/s)

• 读取当前位置

发送: 01 04 00 00 00 02 71 CB

返回: 01 04 04 03 D8 42 20 4A 83 (4220 03D8 转换浮点数 为 40.00375mm)

(电动执行器到达目标位置)

2. 变更参数并进行推压运动(可用于夹爪向内夹紧或外撑工件)

例子: 变更目标位置 / 速度 / 加减速度 / 力矩并驱动电动执行器进行推压运动

目标动作参数			
目标位置(mm)	速度(mm/s)	加速度(mm/s²)	力矩
20	20	100	0.5 (50%)

· 将速度设为 20mm/s

发送: 01 10 08 EE 00 02 04 00 00 41 A0 2B 83

返回: 01 10 08 EE 00 02 23 9D

· 将加速度设为 100mm/s²

发送: 01 10 08 F0 00 02 04 00 00 42 C8 AA 1D

返回: 01 10 08 F0 00 02 43 9B

• 将力矩设为 0.5(50%)※

发送: 01 10 08 F2 00 02 04 00 00 3F 00 0B 02

返回: 01 10 08 F2 00 02 E2 5B

※ 当电动执行器需要执行推压运动时,力矩必须设为 0.3~0.99 内(30%~99%),并且需要开启力矩模式开关 (寄存器地址: 2282)。如果需要修改力矩模式开关的状态,则需发送保存参数指令,并重新启动控制器才能使修

改生效。

· 以 20mm 的位置为目标位置进行动作 ※

发送: 01 10 08 EC 00 02 04 00 00 41 A0 AA 5A

返回: 01 10 08 EC 00 02 82 5D

(移动开始)

※ 在定位模式下,需要先设置力距、加速度、速度,最后再设置目标位置。如果仅设置目标位置而没有设置其他参数,执行器将不会有任何动作。

判断电动执行器是否夹持/推压到工件:

判断范围		
速度	当前速度低于 2mm/s。	
位置	空夹: 当前位置与目标位置的偏差在 ±0.1mm 以内。	
	夹持: 当前位置与目标位置的偏差在 ±0.1mm 以外。	

• 读取当前速度

发送: 01 04 00 02 00 02 D0 0B

返回: 01 04 04 5A CB 3F 0B C8 95 (03D8 4220 转换浮点数 为 0.5443541mm/s)

• 读取当前位置

发送: 01 04 00 00 00 02 71 CB

情况①返回: 01 04 04 F7 20 41 9F B8 02 (419F F720 转换浮点数 为 19.99567mm, 电动执行器空夹 / 空推)

(移动完成,执行器空夹 / 空推)

情况②返回: 01 04 04 F7 A0 41 7E 79 A2 (417E F7A0 转换浮点数 为 15.93546mm,电动执行器夹持/推压到工件)

(移动完成,执行器夹持/推压到工件)

5.3.3 定位模式注意事项(F&Q)

- O1: 在读写数据时需要注意什么?
- A1: 在读写数据时,必须确保使用正确的数据类型。错误的数据类型可能导致数据解析不正确或执行器响应异常。
- O2: 如何判断电动执行器在定位模式下是否已到达目标位置?
- A2: 为了判断定位模式是否到达 / 到位的条件,上位机需要读取并比较当前位置与目标位置的偏差 (±0.1mm),并且当前速度低于 2mm/s 时,即为到达 / 到位 (程序中需加入相应的速度判断逻辑)。
- O3: 在力矩模式下,如何判断电动执行器是否夹持/推压到工件?
- A3: 在力矩模式下,当设定力矩值低于"1"时(0.3~0.99),且设定目标位置在产品行程范围之内,判断条件如下:
 - 如果 RMS 软件调试平台读取并比较当前位置与目标位置的偏差 (±0.1mm),且当前速度低于设定阈值(例如 2mm/s),则判定为无效操作(NG),即空夹或空推。
 - 如果位置未完全到达目标位置但当前速度已低于设定阈值(例如 2mm/s),则判定为有效操作(OK),即夹持或推压工件。
- Q4: 在力矩模式下, 为何读取到的当前力矩 % 比设置力矩 % 要小?
- A4: 当前力矩 % = 安全系数 × 设置力矩 %;该安全系数是防止用户在设置力矩值时,所设力矩 % 过大 ,与执行器允许设置的力矩 % 不匹配,导致执行器损坏。该安全系数值大小与产品系列相关,如有疑问可咨询我司售后工程师。
- Q5: 如何应对电动执行器在定位模式执行中被 RMS 软件调试平台命令打断(如初始化、停止、伺服开关改变)后,导致 重发相同定位指令无响应的问题?
- A5: 针对不同打断情形,采取以下优化措施于程序逻辑中:
 - 初始化中断:若定位模式因初始化指令中断,程序应等待直至接收到初始化完成的信号(状态标志为 1),随即读取电动执行器当前位置,并将此当前坐标即时更新至定位模式的位置寄存器中即可。
 - 停止或伺服开关中断: 若定位模式因停止指令或伺服开关状态变化导致的中断,程序内加入 15-30ms 的适当延时, 旨在确保电动执行器状态稳定后,随即读取电动执行器当前位置,并将此当前坐标即时更新至定位模式的位置寄存器中即可。

6 电动夹爪维护保养

6.1 维护保养总则

6.1.1 首次使用 / 长期未使用

首次使用前,请确认从收货日起至首次使用日间隔时间是否超过半个月(冬季适当缩短)。若超过,建议在使用前先喷洒少量 WD-40 防锈润滑剂于执行器的丝杆、导轨等传动件上,来回移动 3-5 次,让润滑剂充分接触传动件,以保证执行器达到最佳状态。

6.1.2 超过半个月未使用 / 长期未使用

若执行器未使用时间超过半个月,或者需要使用到长时间未触及到的行程时, 需先喷洒少量 WD-40 防锈润滑剂。

- · WD-40 防锈润滑剂只能在以上情况中使用。
- · 正常的日常保养,请使用 NSL 润滑脂。
- 请使用和指定润滑脂兼容的润滑剂,避免异常化学反应,导致机械的损伤。

6.2 维护保养频率

	定期检查传动件	定期检查连接螺丝的松紧程度	定期润滑脂补给
投入运行	0		
运行一个月	0	0	
运行半年	0	0	0
运行一年	0	0	0
以后每半年	0	0	0

以上是以一周5个工作日(8小时/天)运行为基准。

如果执行器需要昼夜运行或高频率使用,或使用环境相对恶劣(如高粉尘、高温等)时,请相对缩短检查周期。

6.3 重点维护保养部位

	润滑脂的补给周期	润滑脂的补给部位
RM-MGBD 系列电动夹爪	每开合 100W 次或半年	导轨

6.4 防尘片的更换

- 若防尘片出现弯折、缺口、断裂等非正常现象时,需及时更换防尘片,否则将影响电动执行器的使用寿命。
- 若需更换防尘片,请联系本公司售后工程师。

6.5 定期外部清洁及润脂

RM-MGBD 此类产品中导轨的导向零部件均裸露在空气中,一般保养周期内会附着上灰尘或其他深色杂质。建议对产品本身及周围环境进行定期清洁和润脂。当有严重污垢或使用超过一定时间后,请按以下步骤对产品进行清洁。 具体清洁 频率视工作环境而定。

① 清洁

先用 WD40 防锈润滑剂对准滑块槽角落喷射,完成后静置 10 分钟左右,如图 1;

用专用的毛刷或碎布将主要的灰尘杂质 擦除,如图 2;

手动来回打开闭合手指,对导轨进行多次清洁,如图 3。

② 更换润滑脂

在上一步的操作之后,旧的润滑脂基本已被清洁掉。接着,将手指移动至最大行程,使用专用的细毛刷,蘸取 NSL 润滑脂,将所有滑块的狭缝涂满润滑脂,如图 4。

③ 清除多余润滑脂

涂满润滑脂后,一般产品会如图 5 情形;

为了保持设备的整体美观,建议用清洁布将多 余的润滑脂擦除。

④ 导轨手指防锈处理

导轨手指的防锈能力与其表面是否有油膜存在相关联,因此, 在擦拭多余润滑脂时,可整体表面擦拭一遍,使其表面附着一层油膜,如图 6。

6.6 定期自检

夹爪类产品,建议每次上电或者改变使用行程前,手动全行程开合夹爪 3~5 次,以让夹爪保持在最佳状态,防止因滑块引入较大阻力导致上电运动异常 / 报警。

产品使用及售后服务卡

USAGE GUIDE AND SERVICE SUPPORT

www.rmaxis.com/support

扫码可快速浏览及下载 所购产品对应的《产品用户手册》&「RMS调试软件」

使用前,请仔细阅读使用说明,正确安装、调试和使用产品。

请选择适配的电源

请做好扎线保护

感谢您选择RM增广®产品及服务!

增广智能

代理经销 / 产品咨询 / 商务合作: Tel: (0757) 2220 5682 E-mail: sales@rmaxis.com

|佛山公司 | 广东省佛山市顺德区大良顺翔路 20 号增广科技大楼

【深圳公司 广东省深圳市光明区科泰路 1388 号 B 栋 7 层

| 南京公司 | 江苏省南京经济技术开发区恒泰路汇智科技园 A1 栋 1211

|苏州公司 江苏省苏州工业园区金鸡湖大道 1355 号国际科技园四期 A1504

声明: 1. "RM 增广*"为本司的注册商标,为维护您的权益,请勿购买来路不明之仿冒品;

- 2. 因产品更新需要,本型录所载产品的参数和图片或会与实际产品有所差异,购买前请先联系销售代表确认;
- 本型录一切解释权归增广智能。本册内信息如有更改,将不另行通知。最新的产品资讯可于官方网站(www.rmaxis.com)下载。请勿复制、 披露或以其他不正当方式使用本资料,一经发现,增广智能将保留追究的权利;
- 4. 生命保障政策:在没有得到佛山市增广智能科技有限公司明确的书面确认下,本公司并没有授权或保证其产品用于生命维持系统。

www.rmaxis.com

登陆官方网站 下载最新产品资料

关注官方微信 了解最新产品资讯